Minimum Variable Connectivity Index of Trees of a Fixed Order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the first extended zeroth-order connectivity index of trees

the first extended zeroth-order connectivity index of a graph   g is defined as 0 1/2 1 ( ) ( ) ,   v   v v g      g d      where   v   (g) is the vertex set of g, and v d is the sum of degrees of neighbors of vertex v in g. we give a sharp lower bound for the first extended zeroth-order connectivity index of trees with given numbers of vertices and pendant vertices,...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Trees of extremal connectivity index

The connectivity index wα(G) of a graph G is the sum of the weights (d(u)d(v)) of all edges uv of G, where α is a real number (α 6= 0), and d(u) denotes the degree of the vertex u. Let T be a tree with n vertices and k pendant vertices. In this paper, we give sharp lower and upper bounds for w1(T ). Also, for −1 ≤ α < 0, we give a sharp lower bound and a upper bound for wα(T ).

متن کامل

the eccentric connectivity index of bucket recursive trees

if $g$ is a connected graph with vertex set $v$, then the eccentric connectivity index of $g$, $xi^c(g)$, is defined as $sum_{vin v(g)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. in this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

On the connectivity index of trees

The connectivity index χ1(G) of a graph G is the sum of the weights d(u)d(v) of all edges uv of G, where d(u) denotes the degree of the vertex u. Let T (n, r) be the set of trees on n vertices with diameter r . In this paper, we determine all trees in T (n, r) with the largest and the second largest connectivity index. Also, the trees in T (n, r) with the largest and the second largest connecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Dynamics in Nature and Society

سال: 2020

ISSN: 1026-0226,1607-887X

DOI: 10.1155/2020/3976274